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Abstract

Asteroids and comets have collided with the Earth in the past and will do so again in the future. Throughout Earth’s
history these collisions have played a significant role in shaping Earth’s biological and geological histories. The
planetary defense community has been examining a variety of options for mitigating the impact threat of asteroids
and comets that approach or cross Earth’s orbit, known as near-Earth objects (NEOs). This paper discusses the
preliminary study results of selecting small (100-m class) NEO targets and mission design trade-offs for flight
validating some key planetary defense technologies. In particular, this paper focuses on a planetary defense demo
mission for validating the effectiveness of a Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, currently
being investigated by the Asteroid Deflection Research Center (ADRC) for a NIAC (NASA Advanced Innovative
Concepts) Phase 2 project.

Introduction

Geological evidence shows that asteroids and comets have collided with the Earth in the past and will do
so in the future. Such collisions have played an important role in shaping the Earth’s biological and geological
histories. Many researchers in the planetary defense community have examined a variety of options for mitigating
the impact threat of Earth approaching or crossing asteroids and comets, known as near-Earth objects (NEOs).

As early as 1992, the idea of discovering and tracking near-Earth objects (NEOs) was proposed to the U.S.
Congress [1]. That search effort, called the Spaceguard Survey, was later implemented in 1998 with the ultimate
goal of finding 90% of the estimated asteroid population 1 km in diameter or larger by 2008. By focusing on
only 1 km size or larger NEOs, that survey only intended to find NEOs large enough to cause global catastrophes.
While not large enough to affect the entire globe, impacts by objects smaller than 1 km occur more frequently
and are capable of causing significant damage. In 2005, the George E. Brown, Jr. Near-Earth Object Survey Act
expanded the original Spaceguard search to include the detection and characterization of 90% of NEOs as small
as 140 m by the year 2020. To date, none of the discovered objects are predicted to be on a collision course with
the Earth, but the survey still has 8 more years to operate until completion. Should a new NEO be discovered on
a collision course with the Earth, a mitigation effort would have to be undertaken to prevent the collision.

Given a lead time (from initial detection of the incoming NEO) of at least 10 to 20 years, depending on
circumstances, various proposed technologies such as kinetic impactors, slow-pull gravity tractors, or solar sails
could be employed to successfully mitigate an impact threat by deflecting the NEO’s heliocentric orbit just enough
to avoid a collision with Earth. When the warning time is short, however, nuclear technologies for a standoff,
contact, or subsurface explosion may be the only viable options. However, as of the time of this writing none
of the aforementioned mitigation options have been validated with a flight demonstration mission. The Asteroid
Deflection Research Center (ADRC) has conducted a preliminary design for Hypervelocity Asteroid Intercept
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Vehicle (HAIV), a spacecraft capable of performing hypervelocity (> 5 km/s) intercept of asteroids as small as a
50–100 meters in diameter [2–4]. In this paper a variety of mission analysis results will be presented to illustrate
candidate target asteroids for a flight validation of the HAIV spacecraft. The mission concepts considered include
direct intercept missions, in which the impactor is inserted directly on an intercept course by the launch vehicle
and is only allowed to perform small ∆V maneuvers prior to impact.

To measure the performance and success of the HAIV spacecraft it would be useful to have an observer
spacecraft at the asteroid prior to the time at which the HAIV interceptor impacts the asteroid. However, due to
mission and launch vehicle cost constraints it is highly desirable to perform the entire mission using one launch
vehicle. Towards that end, we have designed the flight validation mission such that an observer spacecraft is
not strictly required; instead, the HAIV transmits adequate telemetry to Earth for reconstruction of the asteroid
impact event. The flight validation mission design is made even more cost-effective by incorporating advanced
interplanetary mission design techniques including optimally placed deep space maneuvers (DSMs) and both
powered and unpowered gravity assists via planetary flybys.

Previous and Future NEO Missions

To help determine the mission requirements and constraints it is useful to examine past and proposed future
robotic missions to NEOs. Space agencies such ESA, JAXA, and NASA have had several successful missions that
demonstrate technology and mission capabilities that are relevant to the proposed HAIV demonstration mission,
including terminal guidance targeting and/or landing capabilities. Some of the most notable missions are the
Hayabusa Mission by JAXA, and the NEAR-Shoemaker and Deep Impact missions by NASA. The Hayabusa
spacecraft, formerly known as MUSES-C, was sent to the asteroid 25143 Itokawa, a near-Earth asteroid (NEA)
535 × 294 × 209 m in size. While at the asteroid, the spacecraft performed two landings for the purpose of
collecting surface samples, which were subsequently returned to Earth in June 2010. However, problems with the
sample collection mechanism resulted in only tiny grains of asteroid material being returned. The spacecraft also
had a small lander onboard, called MINERVA, that was to be guided to the surface of the asteroid. Unfortunately,
the lander drifted into space and was unable to complete its mission. The NEAR-Shoemaker mission was designed
to study the asteroid 433 Eros, which is one of the largest NEOs at 34.4 × 11.2 × 11.2 km in size. This spacecraft
was the first to orbit an asteroid as well as the first to land on one. While the Hayabusa and NEAR-Shoemaker
missions were designed to softly touch down on the surface of their respective asteroids, the Deep Impact mission
was designed to do just the opposite. Approximately 24 hours prior to impact with the comet Tempel 1, which is
7.6 × 4.9 km in size, the impactor was separated from the flyby spacecraft and autonomously navigated to ensure
a hypervelocity impact at a relative speed of 10.3 km/s.

More recently, ESA proposed a demonstration mission for a kinetic-impactor called the Don Quijote mis-
sion [5, 6]. The mission concept called for two separate spacecraft to be launched at the same time but follow
different interplanetary trajectories. Sancho, the orbiter spacecraft, would be the first to depart Earth’s orbit, and
rendezvous with a target asteroid approximately 500 m in diameter. Sancho would measure the position, shape,
and other relevant characteristics before and after a hypervelocity impact by Hidalgo, the impactor spacecraft.
After Sancho studied the target for some months, Hidalgo would approach the target at a relative speed of ap-
proximately 10 km/s. Sancho then observes any changes in the asteroid and its heliocentric orbit after the kinetic
impact to assess the effectiveness of this deflection strategy. Don Quijote was planned to launch in early 2011 and
complete its mission in mid to late 2017. However, the mission concept was never realized due to higher than
expected mission costs.

Table 1: Target Selection Criteria for the Don Quijote Mission.

Orbit Characteristics Preferred Range
Rendezvous ∆V < 7 km/s

Orbit type Amor
MOID large and increasing

Orbit accuracy well determined orbits
Physical Characteristics Preferred Range

Size < 800 m
Density ∼1.3 g/cm3

Absolute magnitude 20.4 - 19.6
Shape not irregular

Taxonomic type C-type
Rotation period < 20 hours

Binarity not binary
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The selection process for the Don Quijote mission was based on a set of NEO characteristics defined by ESA’s
NEOMAP in Table 1 [7, 8]. Their analysis resulted in the selection of the asteroids 2002 AT4 and 1989 ML. As
seen in Table 2, 2002 AT4 is roughly half the size of 1989 ML, but intercepting it requires more ∆V. A realistic
deflector spacecraft would require a versatile design capable of intercepting and deflecting or disrupting either
target on short notice.

Table 2: Properties of Candidate Targets Considered for the Don Quijote Mission.

2002 AT4 1989 ML
Orbital period (yr) 2.549 1.463

e 0.447 0.137
i 1.5◦ 4.4◦

∆V (km/s) 6.58 4.46
Orbit type Amor Amor

MOID large large
Absolute magnitude 20.96 19.35

Taxonomic type D-type E-type
Diameter (m) 380 800

Rotational period (hr) 6 19

One last notable future mission planned by NASA is the OSIRIS-REx asteroid sample return mission, which
will return a sample from NEA 101955 (1999 RQ36). This mission will launch in September of 2016 and will
return the sample to Earth in September of 2023. This mission will utilize large DSMs, Earth gravity assist (GA),
rendezvous and proximity maneuvers, and an asteroid departure maneuver. The proposed HAIV demonstration
mission will incorporate a combination of the knowledge gained from the development and execution of these
NEO science missions.

Near-Earth Asteroid (NEA) Groups

For the purposes of this study, NEAs in the Atira and Amor orbit groups were considered. A comparison of
NEA orbit families is shown in Figure 1. NEAs in these groups all have perihelion distances < 1.3 AU, and many
of them also cross the Earth’s orbit at some point. The proximity of NEA orbits to Earth’s orbit means that the
∆V required for intercept is usually small. As such, we expect that a number of NEAs will prove to be viable
candidates for an NEA deflection/disruption flight validation mission. Apollo and Aten NEA orbits cross Earth’s
orbit, and in some cases this leads to lower mission ∆V requirements as compared to Atiras or Amors. On the
other hand, this same fact means that any significant perturbation to the NEA’s orbit could cause it to later impact
the Earth. While unlikely, we do not want our demonstration of deflection technologies to cause such a thing to
happen. The ESA also had this in mind when they selected the asteroids 2002 AT4 and 1989 ML from the Amor
group for the Don Quijote mission concept [5].

To preclude the possibility of inadvertently perturbing a previously harmless NEA onto an Earth collision
course, we consider only Atira and Amor NEAs in our study. The Amor asteroid group is characterized by
asteroids that approach the Earth, but do not actually cross its orbit. By definition the perihelion distances of these
asteroids lie between 1.017 and 1.3 AU. As of July 21st, 2012, there were 3398 Amor and Atira asteroids listed
in NASA’s NEO Program database4. While Amor asteroids are entirely outside of the Earth’s orbit, the Atira
asteroid group orbits are contained entirely within the orbit of the Earth. Because the orbits of Atiras and Amors
are entirely interior or exterior to Earth’s orbit, respectively, disturbances to the orbits of those asteroids are not
likely to cause an impact with the Earth at any time after the mission.

Mission Design Software

In addition to the HAIV concept design the ADRC has also developed mission design software tools capable
of performing advanced mission analysis for thousands of potential target asteroids. Due to the large of variables
in these types of missions, an exhaustive search of all 3398 asteroids would be impractical. In addition, all mission
design computation will be performed using an evolutionary algorithm known as a genetic algorithm. The types
of missions considered in this paper can easily be formulated as constrained optimization problems, making them
ideal for evolutionary algorithms. For this approach, each mission type must first be formulated as a single-valued
cost function.

4http://neo.jpl.nasa.gov/stats/
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Figure 1: Comparison of Atira, Apollo, Aten, and Amor class asteroid orbits in relation to the Earth’s orbit.

Utilizing a combination of evolutionary algorithms, modular mission design software, and modern Graphics
Processing Units (GPUs) allows multiple possible mission architectures for thousands of possible target asteroids
to be quickly and efficiently analyzed. Given the capabilities of the mission design software several types of
missions have been considered and are detailed in the following section. Details of the genetic algorithm are
presented in Appendix A.

Problem Formulation and Mission Constraints

The purpose of this paper is to determine realistic mission designs for a HAIV demonstration that can be flown
in the near future. Several mission constraints are imposed during the mission design searches to ensure that the
resulting missions are realistic at the level of the current analysis. These constraints are enforced via penalty
functions that shape the solutions and ensure the best optimal solutions are found while respecting constraints.

The first constraint imposed ensures that the HAIV spacecraft will be able to communicate with Earth ground
stations during the final impact phase of the mission. This is done by penalizing any missions where the impact
would occur on the opposite side of the sun from the Earth. The exact angle limitations for the impact Earth-
Asteroid angle are that the angle must be < 175 degrees from the Earth and > 185 degrees from the Earth. Figure 2
illustrates the line of sight angular constraints. The second main constraint is a guidance and navigation constraint
such that the impactor approaches from the sunward side of the asteroid. This constraint ensures proper lighting
conditions for the terminal guidance phase of the mission.

The purpose of this mission is to demonstrate the feasibility of the HAIV spacecraft for the purpose of plane-
tary defense. The HAIV spacecraft is designed for the sort of hypervelocity impacts that are likely to be required
by planetary defense missions executed with short warning time. Therefore, missions designed in this paper must
have a minimum impact velocity of 5 km/s. Due to anticipated technological limitations, impact velocities over
30 km/s are penalized as well. However, it should be noted that none of the mission analyzed have had an impact
velocity above 30 km/s, meaning the HAIV impactor never has to propulsively decrease its approach velocity. All
other major mission constraints can be found in Table 3. The exact penalty functions are also discussed at the
end of this section. It is worth noting that limitations on NEA orbit group and absolute magnitude (H) reduce the
number of asteroids that much be searched from approximately 3500 to 1500.

Depending on mission complexity, there are different ways to formulate multiple gravity-assist problems (sim-
ple direct intercept missions are a subset of the MGA model). Simple missions, such as NASA’s Voyager, Pioneer,
and Galileo missions, which don’t require large DSMs, can be formulated using the MGA model. This model
requires fewer variables than the MGA-DSM model, meaning they have a much lower computational cost. On
many occasions, small DSMs, when compared to the departure and arrival maneuvers, can significantly lower
the total overall mission cost in terms of minimizing total ∆V or maximizing arrival mass. The formulation for
both types of missions are included in the following subsections. Most of the solution algorithms needed for both
problem types will be included. However, expositions of solutions to Lambert’s problem, solutions to Kepler’s
equation, date conversion algorithms, and so on are omitted for brevity.
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Figure 2: Illustration of the Earth-Sun-Asteroid line-of-site communication angle for the HAIV mission. Green
indicates communicable from Earth ground stations, while red indicates area where communications are not pos-
sible..

Table 3: List of mission constraints.

Asteroid Types Amor, Atira
Earlier Launch Date 1-Jan-18
Latest Launch Date 31-Dec-22

Minimum Impact Velocity 5 km/s
Maximum Impact Velocity 30 km/s

H Magnitude Range 20.75-23.62
Communication LOS Constraints > 185 and < 175 deg

Impact Angle Constraint Penalized if approach isn’t from the sunward side
Impactor Limitations For dual missions the impact must occur after rendezvous s/c arrival

Maximum Departure C3 12.5 km2/s2 for single s/c mission, 30 km2/s2 for dual s/c missions

The intent of both methods is to determine a final cost function that the genetic algorithm can optimize. That is,
minimize or maximize, depending on how the individual problem is formulated. Cost functions typically consist
of all of the required mission ∆Vs, the Earth departure V∞, the final arrival V∞, and any other mission constraints.
Any permutation of these elements can be used for each specific mission type analyzed in this paper. For instance
in this study the departure C3 only affects the final cost function if it is above 12.5 km2/s2 for the single spacecraft
missions and 30 km2/s2 for the dual spacecraft missions. In space mission design this is often done because the
launch vehicle upper stage can be leveraged for the Earth departure maneuver (typically, limited by C3). It is
worth noting that for the genetic algorithm used in this paper, all mission constraints are applied directly in the
cost function.

Multiple Gravity-Assist Model

For the multiple gravity-assist model, two Lambert solutions are essentially “patched” together using the
standard patched conics method. This results in a powered hyperbolic trajectory for each gravity assist in which a
∆V is allowed only at the periapsis passage of each gravity assist. The ∆V at each gravity assist is part of the final
cost function, and is usually driven to a near-zero value.

For each gravity assist, the incoming and outgoing velocity vectors (in the heliocentric frame) are provided by
Lambert’s problem solutions. The velocities relative to the planets are then found as:

~v∞−in = ~Vs/c−in − ~V⊕ (1)

~v∞−out = ~Vs/c−out − ~V⊕ (2)
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From this point the goal is to determine a method to find the periapsis radius that is required to patch the two
solutions together. The first step is to determine the semi-major axis of the incoming and outgoing hyperbolic
trajectories.

ain = −
µ⊕

v2
∞−in

(3)

aout = −
µ⊕

v2
∞−out

(4)

where µ⊕ is the target planet’s gravitational parameter.
The required turning angle is:

δ = cos−1
(
~v∞−in · ~v∞−out

v∞−in · v∞−out

)
(5)

The flyby periapsis radius is equal for both legs of the hyperbolic orbit. That is, we have

rp = ain(1 − ein) = aout(1 − eout) (6)

where ein and eout are the incoming and outgoing orbit eccentricities. It should be noted that the orbits will be
hyperbolic, so both eccentricities will be greater than 1. The turning angle δ can also be represented as the sum of
the transfer angles for the incoming and outgoing orbits.

δ = sin−1
(

1
ein

)
+ sin−1

(
1

eout

)
(7)

Equation 6 can be solved for ein, as

ein =
aout

ain
(eout − 1) + 1 (8)

Substituting Eq. 8 into Eq. 7 gives

δ = sin−1

 1
aout
ain

(eout − 1) + 1

 + sin−1
(

1
eout

)
(9)

which can be rewritten as

f =

(
aout

ain
(eout − 1)

)
sin

(
δ − sin−1

(
1

eout

))
− 1 = 0 (10)

The above equation, which is now only a function of eout, can be iterated upon to solve for eout. A simple
Newton iteration scheme works well. For this the derivative of f with respect to eout must first be found.

d f
deout

=

(
aout

ain
eout −

aout

ain
+ 1

) cos
(
δ − sin−1 1

eout

)
e2

out

√
1 − 1

e2
out

+
aout

ain
sin

(
δ − sin−1 1

eout

)
(11)

To start the Newton iteration, an initial value for eout of 1.5 works well. In a typical Newton iteration scheme,
a do-whileloop is used until eout stops changing within a certain tolerance. The iteration number inside the loop
should also be monitored so that the loop can be exited if convergence doesn’t occur. Each new eout is calculated
as:

enew = eold −
f

d f
deout

(12)

When converged, eout is known and the periapsis radius is calculated from Eq. 6. Finally, the ∆V that must be
applied at periapsis is determined as

∆VGA =

∣∣∣∣∣∣∣
√

v2
∞−in +

2µ⊕
rp
−

√
v2
∞−out +

2µ⊕
rp

∣∣∣∣∣∣∣ (13)

The flyby periapsis radius and ∆V are determined directly from the spacecraft’s incoming and outgoing ve-
locities. These are provided by solutions to Lambert’s problem, which are a function of planetary positions and
times of flight. The planetary positions are also a function of time, meaning that the decision variables for the
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MGA model are the time of Earth departure, time of each gravity assist, and final arrival time. Thus the final cost
function C for the MGA optimization problem is represented as

C = f (X) + g(X) (14)

X = [T0,T1 . . . T f ]T (15)

In this case T0 is the launch date, Ti is the time of flight for each leg of the mission, and T f is time of flight
for the final mission leg. The penalty function, g(X) will be covered later. As shown above each element of the
cost function, ∆Vs, etc, are only a function of time. This MGA cost function can then be optimized by the genetic
algorithm to find optimal or near optimal solutions.

Multiple Gravity-Assist Deep Space Maneuver Model
The MGA model, while simple and easy to implement, is not suitable for all missions. It is often the case

that allowing DSMs, where the ∆V is applied sometime during the interplanetary coast arc rather than at the flyby
periapsis, yields a more optimal solution. This simply implies that the optimal location for mission maneuvers
may not be at the flyby periapses. It was for this reason that the MGA-DSM model was originally developed. This
section will outline the basics necessary to implement this model and is based on Ref. [9–13].

In the MGA-DSM model the mission is broken down into three phases, Earth departure, gravity assist, and
the final terminal phase. For the Earth departure phase an impulsive ∆V can be applied in any direction from
Earth. This can be defined by three variables, the v∞ magnitude (or, equivalently, C3), and the departure right
ascension and declination angles, α and β, respectively. Three additional variables are also needed to completely
describe the model, namely the launch date, time of flight from launch to the first flyby, and the burn index (ε).
The burn index is used to define the point along the trajectory in which a ∆V will be applied to target the next
planet in the sequence. The burn index varies between 0 and 1, although both 0 and 1 would represent a simple
Lambert solution without any additional maneuvers. Constraining the range of allowable departure declinations
has the added benefit of ensuring that any trajectories found will be compatible with the published performance
parameters for a given launch vehicle (in terms of mass delivered to particular C3). Launch vehicles often have
reduced performance when the departure declination is outside the stated range of values, but the details are rarely
provided in published launch vehicle user guides. The spacecraft’s initial state vector at Earth departure is:

~rs/c = ~r⊕(T0) (16)

Vs/c = V⊕(Tlaunch) + v∞

 cosα cos β
sinα cos β

sin β

 (17)

From this point on, the next step is the essentially same for both the departure phase and gravity assist phases.
The spacecraft’s state vector is propagated forward by a time ε1T1, at which point a DSM is applied to target the
next planet. This targeting is performed by applying a solution to Lambert’s problem, with the time of flight given
by (1− ε1)T1. The magnitude of the DSM is just the magnitude of the difference between the velocity vector after
the orbit is propagated and the initial velocity vector from the Lambert’s solution. The planetary arrival velocity,
also from the Lambert solver, is then used for the next phase of the mission.

An additional four variables are necessary for each gravity assist phase of the trajectory: the flyby radius ratio
(rpi), b-plane insertion angle (γi), time of flight (Ti), and burn index (εi). In this case i is the gravity assist number
of the trajectory. The periapsis radius ratio directly defines the periapsis radius. In this formulation the periapsis
radius is a variable, rather than being defined by the problem geometry. In order for the incoming and outgoing
hyperbolas to be defined, the incoming and outgoing v∞ magnitudes are set equal.

Rpi = rpiR⊕ (18)

∣∣∣~v∞−in

∣∣∣ =
∣∣∣~v∞−out

∣∣∣ (19)

Similar to the the MGA model, the incoming velocity vector is given by

~v∞−in = ~Vs/c−in − ~V⊕ (20)

The eccentricity must be found from the patched conic model [14]. In the MGA-DSM model the arrival and
departure v∞ magnitudes are defined to be the same, thus the semi-major axis and eccentricity are the same for
both arrival and departure trajectories described by
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a = −
µ⊕

v2
∞

(21)

e = 1 −
Rpi

a
(22)

The flyby turning angle is given by

δ = 2 arcsin
1
e

(23)

The outgoing v∞ is the obtained from the following four equations:

~v∞−out = v∞
[
cos δî + cos γi sin δ ĵ + sin γi sin δk̂

]
(24)

î =
~v∞−in∣∣∣~v∞−in

∣∣∣ (25)

ĵ =
î × ~V∞−in∣∣∣∣î × ~V∞−in

∣∣∣∣ (26)

k̂ = k̂ × ĵ (27)

The outgoing velocity is found in the same way as it is in the MGA model, as follows:

~Vs/c−out = ~v∞−out + ~V⊕ (28)

Similar to the Earth departure phase, the spacecraft is propagated forward by εiTi time. Then the next planet
is targeted using a Lambert solver. The DSM is found as it is in the departure phase of the trajectory.

The terminal phase of the mission can be formulated in multiple ways. The DSM which targets the final planet
is part of the prior flyby cost function, so the only addition to the cost function is typically either the arrival v∞ or
a ∆V for a specific orbit insertion. Often the orbit about the final planet is defined by an insertion periapsis radius
and insertion eccentricity or orbit period.

The cost function is represented in the same way as the MGA model. However, the number of total state
variables is increased significantly when compared to the MGA model. As before, f (X) is the actual cost function
(mission ∆Vs, etc) and g(X) is a penalty function used to enforce and problem constraints. n is defined to be the
number of gravity assist required by the mission.

C = f (X) + g(X) (29)

X = [T0, v∞−0, α0, β0, ε0,Tl,T1 . . . Tn+1, ε1 . . . εn, γ1 . . . γn, rp1 . . . rpn]T (30)

In Eq. 30, n is the number of gravity-assists to be performed. An example final form of a typical cost function,
without any constraint penalties, is expressed as

C = v∞−0 + ∆V0 + ∆V1 . . .∆Vn + v∞− f (31)

where ∆Vi is the magnitude of the DSM corresponding to an accompanying planetary flyby.

Problem Constraints
In optimization problems, constraints are often used to help shape the final solution. When implementing

genetic algorithms, constraints are used, rather than hard limits, in order to keep to solution space open. If the
solution space isn’t sufficiently large the genetic algorithm will be unable to start, due to the random initialization
process.

Common constraints for mission design problems include periapsis radius during a gravity assist, mission
time/leg length constraints, and guarding against low velocity flybys. During a low-velocity flyby the spacecraft
is captured by the planet instead of gaining velocity in the heliocentric frame. Any other constraint the user
wishes impose to help shape the solution can be added, as long as the constraint values are approximately the
same order of magnitude at the actual cost function values. It should be noted that when using the MGA-DSM
model in conjunction with a genetic algorithm all of the variables can be explicitly constrained. However, low-
velocity flybys can still occur. Specific HAIV mission constraints imposed include maximum C3, Earth-Sun
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communication angles, final terminal approach angles, impactor approach velocity, and a time constraint that
ensures the rendezvous spacecraft arrives prior to hypervelocity impactor.

It is often the case the MGA model results in a periapsis radius that is less than the planet’s physical radius
or is too close to the planet’s atmosphere. In this situation a constraint-handling method is necessary to move the
solution toward more feasible solutions. The method below is from Englander, et al [10].

gi(X) = −2 log
Rpi

kR⊕
(32)

where k is a multiplier used to define how close the spacecraft is allowed to fly by a target planet. For all of the
examples in this paper a value of 1.1 was used.

The second constraint penalty method penalizes low-velocity flybys. The method has also been adapted from
Englander et a.l [10] Low-velocity flybys are very rare, but solutions should still be protected from converging on
them. The orbital energy relative to the flyby planet can be calculated as

E =

∣∣∣~v∞−in

∣∣∣2
2

−
µ⊕
Rsoi

(33)

For the flyby trajectory to be hyperbolic relative to the planet, E must be greater than zero. However, the sphere
of influence model is an approximation, so an additional 10% margin on the incoming velocity needs to be added.
For relatively large v∞ the penalty is zero or very small compared to the overall cost function value. Alternatively,
for very low v∞ values the penalty is large enough to severely influence the final shape of the solution. The flyby
orbital energy, adjusted for the 10% margin, and final constraint are calculated using the following two equations:

E =

∣∣∣0.9~v∞−in

∣∣∣2
2

−
µ⊕
Rsoi

(34)

gi(X) =

 0 E ≥ 0
1
|~v∞−in|

E < 0 (35)

For the MGA model, trajectories can be found with Earth departure C3 values that exceed the specified limit.
The penalty function is formulated to represent that additional Earth departure ∆V beyond that provided by the
launch vehicle’s upper stage would be required from the HAIV spacecraft in order to attain the required C3. The
exact penalty function is

gi(X) =

{
v∞−l −

√
C3max v∞−l >

√
C3max

0 v∞−l ≤
√

C3max
(36)

The following time constraint is used to ensure that the rendezvous spacecraft arrives at the asteroid prior to
the arrival of the HAIV spacecraft.

gi(X) =

{
0.1(Trend.−arrival − Timpactor−arrival) Trend.−arrival > Timpactor−arrival

0 Trend.−arrival ≤ Timpactor−arrival
(37)

The next constraint is added to ensure the communication line-of-site angle is feasible during the final terminal
impact phase. This is especially important in the absence of an observer spacecraft, as communications with the
Earth just prior to impact will be the only way to determine mission success. ~R⊕ is the Earth radius vector at
impact, while ~Rast is the asteroid radius vector at impact. The line-of-site angle is then found as

LOS = cos−1
 ~R⊕ · ~Rast

R⊕Rast

 (38)

To ensure the LOS angle is in the right quadrant, the z component of the cross product of the two radius vectors
is utilized as follows

~c = ~R⊕ × ~Rast (39)

LOS = 2π − LOS c(3) ≤ 0 (40)

The final penalty function for the LOS angle constraints is given in the following constraint equation:
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gi(X) =

{
exp

(
−1

1−(LOS−180)2

)
175◦ ≤ LOS ≤ 185◦

0 f or all other angles
(41)

The final penalty function used to ensure mission feasibility penalizes the relative asteroid velocity with respect
to the asteroid’s position relative to the sun. This ensures that the spacecraft arrives on the sunward side of the
asteroid, which results in lighting conditions that are favorable for the terminal guidance system. The asteroid
radius and impactor relative velocity unit vectors are utilized to preclude numerical scaling issues. Unlike the time
and LOS angle penalties, all angles greater than 0 (which corresponds to approaching directly along the asteroid-
sun line from the sunward side) are penalized with a linear function. This is done because the approach angle is
one of the most critical parameters to ensure mission success.

S A = cos−1(~er · ~ev) (42)

gi(X) =
1
π

S A (43)

Additional penalty constraint functions can be added to shape the solution as the user desires. The final
constraint function is the sum of the individual constraint functions given by

g(X) =
∑

gi(X) (44)

With the cost function for each method finalized then next step is to develop the genetic algorithm capable of
optimizing these types of advanced mission design problems.

Mission Analysis Results

In this section the mission design results for the various mission architectures considered in the study are
presented. Each of these mission types can be constructed using the methods described in the previous section.
The genetic algorithm described in Appendix A was then used to optimize each constructed cost function using
the mission constraints. More details on common limits used for each variable can be found in [10, 12, 13]. For
each mission type approximately 1500 potential target asteroids were scanned for feasible missions. The results
presented in the following three subsections are subsets of the standard MGA model, while all other results are
subsets of the MGA-DSM model.

Direct Intercept Missions

For the direct intercept mission the launch vehicle is used to inject the HAIV spacecraft into an interplanetary
orbit that directly intercepts the target asteroid. This is the simplest mission type analyzed, with only two vari-
ables to optimize (launch date and time-of-flight to the asteroid), and yields the largest number of feasible target
asteroids. For direct intercept missions a relatively low C3 limit of 12.5 km2/s2 is used. By limiting missions to
low C3s it may be possible to use a less capable (and therefore less expensive) launch vehicle than for missions
that include both an impactor and rendezvous (observer) spacecraft.

With the low C3 limit, hundreds of potential target asteroids were found during the search. These asteroid
require no ∆V from the HAIV impactor, other than small statistical course corrections during the terminal impact
phase of the mission. The results presented in Table 4 represent the top 3 asteroids determined by a joint study
with the Mission Design Lab (MDL) at the Goddard Spaceflight Center and the ADRC. These asteroids were
chosen because their orbits are fairly well known (or future observations of them will be possible prior to the
mission launch dates), the estimated diameters5 are close to the desired diameter of 100 meters, they have low sun
approach angles, and the impactor arrival velocities are high enough to be technically challenging yet feasible.
How well the asteroid orbits are known is expressed by the Orbit Condition Code (OCC)6 for the orbit, which is
an integer scale ranging from 0 (a very well known orbit) to 9 (a very poorly known orbit).

5We estimate the asteroid diameters based on their absolute magnitude (H) values and an assumed geometric albedo of 0.25. The
relationship between diameter, H, and geometric albedo is documented at http://www.physics.sfasu.edu/astro/asteroids/

sizemagnitude.html.
6The OCC is also the Minor Planet Center (MPC) “U” parameter, documented at http://www.minorplanetcenter.net/iau/info/

UValue.html.
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Table 4: Top 3 asteroids for the single direct intercept mission.

Asteroid 2006 CL9 2009 QO5 2004 BW18
a (AU) 1.35 1.59 1.37

e 0.24 0.24 0.25
Diameter (m) 104.85 105.82 97.40

Departure C3 (km2/s2) 11.99 12.50 12.49
Require S/C ∆V (km/s) 0.00 0.00 0.00

LOS Angle 349.01◦ 349.33◦ 333.17◦

Sun Approach Angle 3.04◦ 28.05◦ 34.21◦

Departure Date 2-Aug-19 27-Mar-19 7-Apr-19
TOF (days) 121.41 124.38 268.45

OCC 5 1 5
Arrival Velocity km/s 11.53 9.22 6.57

Combined Rendezvous and Direct Intercept Missions

Direct intercept missions are the baseline reference missions for the HAIV studies at the ADRC, however it
may be useful to have a spacecraft at the asteroid prior to impact. This rendezvous spacecraft would likely be a
small spacecraft attached to the HAIV spacecraft that would separate at some point during the mission. The goal
of the following sections is to determine a trajectory solution such that the HAIV spacecraft has a relative intercept
velocity greater than 5 km/s and the observer spacecraft can rendezvous with the asteroid prior to impact. Several
mission types are presented that attempt to minimize the total ∆V required by both the HAIV impactor and the
rendezvous spacecraft such that the mission design can be flown using existing launch vehicles.

During initial mission analysis we determined that no feasible trajectories could be found with the relatively
low C3 used for the direct intercept mission. We therefore revised the maximum allowable C3 to 30 km2/s2 and
considered Delta IV and Atlas V launch vehicles.

The first mission type that we analyzed employs a single DSM after the separation of the two spacecraft.
For this type of mission, referred to herein as a Type 1 mission, the rendezvous spacecraft continues on a direct
intercept course, while the HAIV impactor uses a DSM to target asteroid intercept at a later date. The results
for Type 1 missions are shown in Table 5. The lowest total ∆V required is 3.299 km/s for asteroid 2010 KU7.
However, this ∆V is likely too high to be feasible. By examining the results it appears that the impact velocity
was often driven to the lower limit of 5 km/s, which indicates that lowering the minimum required impact velocity
may lower the total mission ∆V.

Table 5: Top 5 asteroids by total required ∆V for Type 1 missions.

Asteroid 2010 KU7 2012 JX11 2001 CK42 2009 CR4 2000 RD53
a (AU) 1.67 1.97 1.42 1.75 1.79

e 0.381 0.475 0.281 0.419 0.428
Diameter (m) 94.74 58.42 265.80 122.62 279.61

Total ∆V (km/s) 3.299 3.518 3.711 3.737 3.755
Launch Date 3-Apr-18 3-Apr-18 3-Apr-18 3-Apr-18 3-Apr-18

Impactor TOF (days) 668.356 801.317 542.820 676.738 651.854
Rend. TOF (days) 381.743 472.330 329.512 405.902 365.241

C3 (km2/s2) 25.584 33.860 16.815 33.803 24.088
Impactor DSM (km/s) 2.387 1.990 3.258 2.153 2.030

Rendezvous Arrival ∆V (km/s) 0.912 1.186 0.453 1.247 1.725
LOS 26.164◦ 257.769◦ 128.765◦ 19.857◦ 39.917◦

Sun Angle 97.820◦ 102.315◦ 92.953◦ 94.386◦ 106.090◦

Impactor Velocity (km/s) 5.001 5.001 5.000 5.000 5.000

The second type of mission analyzed, referred to herein as Type 2, is similar to the Type 1 mission except that
the rendezvous spacecraft performs the DSM to target the asteroid at a different date than the HAIV interceptor.
The top 5 results for this search are shown in Table 6. Examination of the results reveals that, on average, the total
required ∆V is reduced by approximately 1 km/s, with the lowest required ∆V being approximately 2.6 km/s. Like
the Type 1 mission results the impact arrival velocity is often driven to 5 km/s. As mentioned previously, reducing
the minimum allowable impact velocity may reduce the total mission ∆V required.
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Table 6: Top 5 asteroids by total required ∆V for type 2 missions.

Asteroid 2000 WO148 2009 TV4 1998 UM1 1996 FO3 2008 XB
a (AU) 1.64 1.69 1.7 1.44 1.51

e 0.376 0.37 0.402 0.29 0.313
Diameter (m) 198.9 59.2 60.1 212.1 81.4

Total ∆V 2.603 2.657 2.709 2.926 2.942
Launch Date 19-Jan-20 27-Sep-20 20-Sep-18 11-Feb-22 2-Dec-21

Rend TOF (days) 515.347 335.871 404.795 353.638 395.915
Impactor TOF (days) 373.451 550.537 488.660 362.521 404.855

C3 (km2/s2) 26.636 29.154 33.104 16.800 24.198
Rendezvous DSM (km/s) 1.265 0.562 1.448 0.951 1.632

Rendezvous Arrival∆V (km/s) 1.338 2.095 0.976 1.975 1.310
LOS 64.029◦ 198.157◦ 149.624◦ 202.840◦ 163.150◦

Sun Angle 91.704◦ 100.956◦ 60.920◦ 90.103◦ 100.676◦

Impact Velocity (km/s) 5.047 5.000 5.000 5.004 5.000

Gravity Assist(s) Missions using the MGA Model
Planetary gravity assists are often used to reduce the required ∆V for outer planet missions, and this is also

possible for the missions considered herein. Gravity assist(s) can lower the average required total mission ∆V to
the 1-1.5 km/s range, with some solutions found that require as little as approximately 600 m/s. For the following
Type 3 and Type 4 missions the optimizer was used to decide which planet(s) should be used for the gravity
assist(s). In all of the best cases presented, the Earth was found to be the best planet for the gravity assist(s). Given
that most of the target asteroids have a semi-major axis between 1 and 1.3 AU, this is an intuitively satisfying
result.

Type 3 missions use a single gravity assist achieved by having the HAIV impactor perform a DSM to target the
planetary flyby. The gravity assist is then used to increase the velocity of the impactor, thus lowering the required
∆V when compared to Type 1 and Type 2 missions. Missions where the rendezvous spacecraft performs a gravity
assist to lower the arrival ∆V were also considered, however this did not improve the total required ∆V compared
to Type 1 and Type 2 missions.

A summary of the best Type 3 mission results is shown in Table 7. The best mission requires a total ∆V
of approximately 1.15 km/s, which represents a nearly 1.5 km/s reduction from the best solution found for the
previous mission types.

Table 7: Top 5 asteroids by total required ∆V for Type 3 missions.

Asteroid 2012 OO 2008 XB 2000 WO148 2009 CO5 1996 FO3
a (AU) 1.7 1.51 1.64 1.66 1.44

e 0.383 0.313 0.376 0.345 0.29
Diameter (m) 214.07 81.39 198.86 119.83 212.11

Total ∆V (km/s) 1.145 1.322 1.410 1.430 1.539
Launch Date 3-Sep-21 13-Dec-21 15-Jan-20 14-Mar-22 21-Feb-22

Rendezvous TOF (days) 627.812 231.753 569.599 553.895 245.288
Impactor TOF Leg 1 (days) 625.840 685.350 626.402 630.144 699.471
Impactor TOF Leg 2 (days) 70.945 226.789 156.689 716.637 275.928

C3 (km2/s2) 34.509 29.678 27.570 30.354 30.460
Impactor ∆V (km/s) 0.546 0.764 0.264 0.496 1.094

Rendezvous Arrival ∆V (km/s) 0.599 0.558 1.146 0.934 0.445
Gravity Assist Planet Earth Earth Earth Earth Earth
GA Perigee Rad (km) 7397.560 17249.044 8032.784 30908.181 13097.549

LOS 348.472◦ 289.519◦ 316.493◦ 332.860◦ 281.732◦

Sun Angle 134.721◦ 6.243◦ 156.973◦ 164.746◦ 4.909◦

Impactor Arrival Velocity (km/s) 5.798 5.118 6.149 5.016 5.601

The last mission type, Type 4, considered for the MGA model employs two gravity assists. The HAIV impactor
targets the first gravity assist planet with a DSM. After the first gravity assist the spacecraft flies on a ballistic
trajectory until the second gravity assist. This resulted in total mission ∆V being reduced from the Type 3 solutions.
As was the case with Type 3 missions, the optimal gravity assist planet is the Earth for both assists. Type 4 mission
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results are shown in Table 8. For these missions the lowest required total ∆V is reduced to approximately 600 m/s,
ranging up to 1.3 km/s for the top 5 asteroids.

Table 8: Top 5 asteroids by total required ∆V for type 4 missions.

Asteroid 2012 CR 2011 FR17 2010 XB73 2010 GZ33 2011 AL24
a (AU) 1.77 1.7 1.71 1.91 1.72

e 0.381 0.295 0.308 0.423 0.345
Diameter (m) 120.38 55.53 102.46 90.90 91.32

Total ∆V (km/s) 0.608 1.005 1.218 1.254 1.306
Launch Date 25-Feb-19 10-Mar-22 30-Nov-19 3-Apr-18 10-Jan-20

Rendezvous TOF (days) 366.722 405.961 351.305 325.152 391.061
Impactor TOF Leg 1 (days) 692.292 702.523 694.408 682.899 692.473
Impactor TOF Leg 2 (days) 44.823 569.094 351.721 1223.708 1126.003
Impactor TOF Leg 3 (days) 605.125 533.076 540.387 767.832 565.256

C3 (km2/s2) 26.788 29.499 30.623 30.008 32.096
Impactor S/C ∆V (km/s) 0.461 0.303 0.230 1.150 0.373

Rendezvous Arrival ∆V (km/s) 0.147 0.702 0.988 0.104 0.933
First Gravity Assist Planet Earth Earth Earth Earth Earth

Perigee Radius 1 (km) 34570.970 32342.255 40987.783 7151.113 19785.661
Second Gravity Assist Planet Earth Earth Earth Earth Earth

Perigee Radius 2 (km) 28356.505 87771.992 21174.207 20645.644 91586.652
LOS Angle 341.415◦ 54.077◦ 30.175◦ 201.362◦ 26.862◦

Sun Angle 175.912◦ 168.543◦ 167.575◦ 174.940◦ 167.531◦

Impactor Velocity (km/s) 12.271 9.541 7.213 19.394 10.213

Conclusion

Throughout this paper several possible mission types for a HAIV demonstration mission have been analyzed.
The baseline HAIV architecture is the simple direct intercept missions. These types of missions have the largest
number of feasible candidate target asteroids, require a minimal total post-launch ∆V (close to 0 km/s for the op-
timal cases presented herein), and are representative of the sort of worst case asteroid mitigation mission scenario
that we should be prepared for. Table 4 shows a summary of the top 3 asteroids chosen from a search of possible
target asteroids.

More advanced missions, which enable an observer spacecraft to arrive at the asteroid prior to the main space-
craft impact, have also been analyzed. The results generally show that allowing the impactor spacecraft to perform
multiple gravity assists lowers the total required ∆V for each mission considered as well as increases the impactor
arrival velocity. Several feasible gravity assist rendezvous missions are presented in Tables 7 and 8. There are
several possible target asteroids which require a total ∆V of 1.5 km/s or less, with the lowest combined ren-
dezvous/impact mission ∆V of approximately 600 m/s.

Appendix: Genetic Algorithm Basics

The heart of a genetic algorithm is the simulation of natural selection, reproduction, and mutations found
in nature. Genetic operators are used to ‘evolve’ an initial population, through genetic operators, in order to
determine a best fitness design [15]. The purpose of this section is to develop and implement a genetic algorithm
for the MGA, MGA-DSM, and other complex mission design problems.

A genetic algorithm(GA) is a stochastic optimization method based on the principles of evolution. Genetic
algorithms perform a probabilistic search by evolving a randomly chosen initial population. The population is just
a series of sets of variables that are evaluated by a cost function, in this case the cost functions previously cov-
ered. The advantage of using evolutionary methods over traditional optimization methods is that no initial solution
is necessary. This helps ensure, but does not guarantee, that solutions are not confined to locally optimal solu-
tions. Genetic algorithms also perform well in very complex nonlinear design spaces. Despite all the advantages,
evolutionary algorithms do have their downside. They almost always require a greater number of cost function
evaluations, increasing the computational requirements. Additionally evolutionary algorithms do not make use of
gradients, so there is no proof of convergence. It should also be noted that genetic algorithms were developed for
constrained minimization problems and may not perform well for unconstrained minimization.
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The basic genetic operators are, selection, reproduction/crossover, mutation, and elitism. The genetic algo-
rithm developed in this section can utilize a number of different selection, reproduction, crossover, and mutation
methods. Each of the methods will be discussed in detail in later sections.

In a simple genetic algorithm (SGA), each variable is represented by a binary string where individual bits
are represented by 1’s and 0’s. This binary string is referred as a gene. The separate genes for each variable are
then concatenated to form a complete chromosome. One chromosome correspond to one member of the entire
population, which can number in the hundreds of thousands for some problems. This binary representation of
variables means that each variable is discretized to a certain resolution. In our case the desired resolution for each
variable is one of the inputs to the genetic algorithm, along with the individual variable upper and lower bounds,
size of the population, and number of generations the population is to be run out. For an individual variable the
resolution is defined as

r =
xU − xL

2b − 1
(45)

where xU and xL are the user specified variable upper and lower bounds, while b is the minimum number of bits
required to obtain the desired variable accuracy. Eq. 45 can then be solver for b for each individual variable. With
the variable b known for each variable the size of each chromosome can be determined.

Then next step in the process is to randomly, via a “digital coin flip”, assign a value (1 or 0) to each position
in the chromosome. The coin flip is performed using a uniform random number generator, that generates random
numbers between 0 and 1. If the random number is greater than 0.5, the a value of 1 is assigned, otherwise a value
of 0 is assigned. This process is run out to generate an entire initial population, which is randomly distributed
throughout the design space.

Figure 3: Simple genetic algorithm flow chart.

From this point each member of the population is assigned a fitness value, via a user supplied cost function.
The genetic operators are then used to generate a new population from the initial parent population. This is the
crux of how genetic algorithms are able to evolve to more fit populations. This process continues until the genetic
algorithm is told to exit and output the final population. Common stopping conditions include stopping after a
certain number of iterations, monitoring when the best fit solution stop changing, or monitoring when the average
cost function value approaches the population minimum. For this study the stopping condition is always running
the genetic algorithm out by a user specified number of generations. The sequence of operations of the core
operations of the genetic algorithm is illustrated in Figure 3. One secondary operator, elitism, was used in this

14



genetic algorithm as well. The elitism operator ensure that the best fit solution(s) are not lost from generation
to generations. A simple elitism operator is used, in which the top two solutions from the parent population are
directly inserted into the next generation.

Selection Types
In genetic algorithms, selection operator, also the first genetic operator, is used to ensure that the best fit

solutions are chosen to pass on their genes through the reproduction and crossover operators. The selection
operator is essentially the operator that represents the survival of the fittest principle. A total of two selection types
have been implemented in this genetic algorithm one based solely on a roulette selection method, and another that
combines roulette and tournament selection. These two operators are by no means the only possible selection
methods, but that are some of the simplest to use and prove to work well for the mission design problems.

Roulette selection is a fitness proportionate selection method in which better fit individuals are more likely
to be chosen for reproduction and crossover. There are four fitness types that are used in the roulette selection
method described in this section. The ultimate goal is to get a normalized fitness that ranges from 0 to 1. More fit
members of the population will have a higher normalized fitness value, thus they will be more likely to be chosen
for further genetic operations.

The first fitness type is the raw fitness, r(i), which is the fitness values provided directly from the cost function
for each population member. In this case i represents the chromosome/population number. The raw fitness is
then standardized, depending on whether the problem is being minimized and maximized. If the problem is a
minimization problem, the standardized fitness is the same as the raw fitness as

s(i) = r(i) (46)

However, if the problem is a maximization problem, the standardized fitness becomes

s(i) = rmax − r(i) (47)

Now the fitness is adjusted so that individual fitnesses lie between 0 and 1. The adjusted fitness is larger
for better individuals. The advantage of this optional step is that small differences in the most fit individuals,
those that approach an adjusted of 0, are exaggerated. This has a larger benefit when the population improves by
emphasizing small differences in individuals. This effect is most exaggerated in problems where the best solution
has a cost function near 0 [16, 17], as follows

a(i) =
1

1 + s(i)
(48)

Now that the adjusted fitness values lie between 0 and 1 the next step is to normalize the whole population, so
the sum of each normalized fitness value is 1. Ultimately, this is necessary because individuals are chosen through
the use of random numbers, that also in 0 and 1 range, as

n(i) =
a(i)

n∑
j

a( j)
(49)

The actual selection of individuals, based on normalized fitness, is done in the following manner. Firstly the
normalized fitnesses are sorted from largest to smallest. Next a random number is generated. This random number
will decide which individual is then selected. The actual selection of an individual is done by a summation of the
normalized fitness values. The individual that causes the summation value to be greater than the random number is
chosen to move along through the rest of the genetic operators. This process is repeated and both of the individuals
then go through the reproduction or crossover operators. Thus, more fit individuals are more likely to be passed
on to the next generation.

Tournament is a greedy over selection method that also utilized the roulette selection method. Two individual
are chosen using roulette selection and then compete to see which individual is allowed to pass on its genetic
material. This is done through the direct comparison of their normalized fitness function. The individual with
the best fitness is chosen as the one that gets to pass through to the reproduction and crossover operations. The
process is repeated twice, resulting in two individuals who’s genetic material can be passed on.

This selection method has a distinct advantage in that it drives down the raw fitness and average of the fitness
function in fewer generations than pure roulette selection. With all greedy over selection methods there is a risk
that genetic diversity, which could help out the population in later generations, will be lost. Therefore tournament
selection should be used with care by the user. In the orbital problems discussed in this paper, tournament selection
does appear to work well.
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Reproduction and Crossover Operator Types

While the selection operator determines which population members get the privilege of reproducing and pass-
ing on their genetic material to future generations, the crossover and reproduction operators decided what to do
with that genetic material. In the algorithm utilized in this paper the user must supply the probability in which an
individual will under go either reproduction or crossover. These probabilities must total up to 1.0 (100%), with
values typically being close to 0.9 and 0.1 for crossover and reproduction respectively. It should also noted that
both operations require two parent and produce two offspring.

The simplest of these two operators is reproduction. In traditional genetic algorithm terms this means that the
operation is a fitness-proportionate process in which individuals are allowed to directly pass to the next generation
with a probability proportionate to their fitness values. This essentially means that when reproduction occurs the
two parents are passed directly from the parent generation into the next generation. As with every other critical
procedure in the genetic algorithm, whether the parents undergoes reproduction or crossover is chosen through the
use of random number. In the algorithm a random number is generated. If the random number is greater than the
user given crossover probability the parents undergoes reproduction. If not, the a crossover operation is applied.
This, of course, is the reason that the two probabilities must total up to 100%.

The crossover process is a process in which biological reproduction is used to allow new individuals, with new
and unique genetics, to be created. Unlike the reproduction process, crossovers allow new points in the design
space to be searched. Without reproduction (and also mutations) genetic algorithms would be no more useful and
a completely random search. The crossover operation produces to offspring from two parents that contain genetic
material from both parents. A total of 4 distinct crossover types have been implemented in for use with this genetic
algorithm. The user supplies which crossover type should be used, making the final genetic algorithm suitable for
many different types of optimization problems. For the mission design problems discussed in this paper the double
point crossover proved to be the best crossover type. However for other types of problems this may not necessarily
be the cause.

Figure 4: Simple illustration of the four implemented crossover types.

The purpose of each crossover type is to promote genetic diversity and expand, in a controlled way, the
search of the design space. The first type considered is uniform crossover. It has been shown to be a very effective
method for promoting genetic diversity, and in turn the discovery of new useful chromosomes [15, 18]. In uniform
crossover each bit in the chromosome is a crossover point. The two offspring are generated by the same virtual
coin flip that was used to initially generate the population for the first generation. If two bit are the same for both
parents no coin flip is necessary. However, if two bits are not identical in the parents the coin flip is used to decide
which offspring gets the genetic material from the separate parent individuals. This process is graphically shown
in the first entry in Figure 4. In this case if the coin flip is heads, i.e. the random number is greater than or equal
to 0.5, the bit from the second parent is inserted into the chromosome for the first child and the bit from the first
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parent is inserted into the chromosome of the second child. The exact opposite is true if the coin flip is tails, i.e.
the random number is less than 0.5.

A second crossover operator has also been developed that is similar to uniform crossover but only operates on
an individual gene. This process only changes the value of one gene (i.e. variable). In some situations changes
to an individual variable can greatly improve (or alternatively worsen) the individuals fitness. For this process a
gene is randomly selected. The same gene then undergoes uniform crossover. An illustration of this method can
be seen in Figure 4. In this example the second gene (bits 4-7) undergoes uniform crossover through the same
virtual coin flip method described above.

In single point crossover one bit is randomly chosen to be the crossover point. All bits after the random
crossover point are swapped between the two points. Double point crossover is the same thing with two randomly
chosen crossover points. While these two methods are the simplest of the tested crossover methods they have
proven extremely useful in practical applications.

Mutation Types
The last genetic operator, which the newly generated population must pass through, is the mutation operator.

The probability that a mutation will occur and the desired type of mutation are the last two user inputs. The
probability that a mutation should occur should be small, typically less than 0.05 (5%). When the mutation
probability is set too high the genetic algorithm will start to resemble a simple random search. If the user doesn’t
wish to make use of the mutation operator, a probability of 0 can be entered as well.

Figure 5: Simple illustration of the four mutation types implemented.

Allowing the genetic algorithm to utilize a mutation operator has several advantages. Mutations are used to
help maintain genetic diversity in a population as it ages. Often times after many generations the population
can lose genetic diversity and stagnate at a local minimum. Mutations help to prevent this from happening. By
introducing (or in some cases reintroducing) changes in a chromosome or individual gene it is possible for better
more fit individuals to appear.

As with the crossover operator four separate types of mutations have been implemented. Unlike reproduction
and crossover mutations operate on a single individual in the population. Different mutation types may work well
for individual problems. The four types introduced here are representative of some of the most common types of
mutations used in genetic programming. Each mutation type is illustrated in Figure 5.

The simplest type of mutation is the flip bit mutation. In this type of mutation the program randomly chooses
a single bit to be flipped. When a bit is flipped that value is either changed from 1 to 0 or from 0 to 1. The next
three mutation types are only allowed to operate on a single randomly chosen gene.

The boundary mutation type is as simple as it sounds. An individual gene is set either to corresponding
variables user supplied minimum or maximum. The digital coin flip is used to decided whether the minimum or
maximum values will be used. To set the gene to the maximum every bit is set to 1. Alternative is the gene is set
to the minimum every bit is changed to 0.

Uniform mutation is similar to uniform crossover and the method used to initialize the population. A digital
coin flip is used to completely redefine an individual gene. The last mutation type studied, inversion, is a simple
mutation operator that has proven to work extremely well for mission design problems. As the name implies,
when inversion is applied the bits that make up the gene are simply inverted.
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Table 9: Comparison of mutation and crossover types for a Cassini-type MGA-DSM mission or a population size
of 20,000 run for 200 generations. The numbers represent the final cost function values in km/s.

Crossover Type Mutation Type
Flip Bit Uniform Boundary Inversion

Uniform 6.510 6.938 6.805 6.536
Uniform Gene 4.903 5.050 5.626 5.368

Single Point 5.182 4.148 4.636 4.687
Double Point 4.389 3.731 5.137 3.363

Comparison of Genetic Operator Performances

When using genetic algorithms, it is beneficial to perform a study to determine which combination or selection,
crossover, and mutation operators work best with the type of problem being solved. A much more detailed study
than that illustrated in Table 9 was performed when designing and implementing the genetic algorithm. None
the less, Table 9 is representative of the results. In general, the best crossover type for the MGA and MGA-
DSM problems is double point. It is less clear which mutation type is the best. Both the uniform and inversion
operators perform well. For the following example problems, the selection, crossover, and mutation types used
are tournament, double point, and inversion respectively.
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