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COMPARISON OF FRAGMENTATION/DISPERSION MODELS FOR
ASTEROID NUCLEAR DISRUPTION MISSION DESIGN

Brian D. Kaplinger∗ and Bong Wie†

This paper considers the problem of developing statistical orbit predictions of near-
Earth object (NEO) fragmentation for nuclear disruption mission design and anal-
ysis. The critical component of NEO fragmentation modeling is developed for a
momentum-preserving hypervelocity impact of a spacecraft carrying nuclear pay-
load. The results of the fragmentation process are compared to static models and
results from complex hydrodynamic code simulations, developing benchmark ini-
tial conditions for orbital prediction algorithms. The problem is examined in a way
that enables high-performance GPU acceleration of the resulting computational
system, and the mission design fidelity is improved to allow for high through-
put self-gravity and collision models of NEO fragments. Improvements to model
efficiency are demonstrated using a range of orbits to assess disruption mission
effectiveness.

INTRODUCTION

Asteroids have impacted the Earth in the past and threaten to do so in the future. While the most
likely near-term threat is that of a low-altitude airburst, the expected energy of an event such as
Tunguska would be devastating in a highly populated area. Additionally, though the population of
catastrophic impactors has been well surveyed, it is estimated that thousands of bodies over 140
m in diameter remain undiscovered [1]. Many methods have been suggested for the mitigation of
this threat, but most require substantial lead time in order to be effective. A study by the National
Research Council suggests that nuclear explosive devices may be the only option for late warning
cases [2]. Previous simulations show that disruption, once thought to be undesirable, may substan-
tially reduce the amount of mass remaining on impact trajectories. This method could be available
with as little as 10 days of lead time between intercept and the predicted impact date for an orbit
like that of the asteroid Apophis [3].

This paper addresses a simulation framework for a disrupted near-Earth object (NEO) dispers-
ing along the orbit. Initial simulations use a spherical NEO model with a dense granite core and an
outer shell of tuff material, similar to the description in [1], the only difference being that a meshless
particle description is used, with the mass distributed to best approximate the desired body. A for-
mulation for adapting the procedure in [4] is given for a general NEO shape, allowing a wide range
of initial conditions with a momentum-preserving fragmentation model. After simulation of the
NEO breakup, individual fragments are identified and their resulting velocities mapped to a rotat-
ing orbital coordinate system. The trajectory of each fragment is then predicted using an improved
version of the algorithms presented in [5], with special attention paid to the probability density of
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fragment given uncertain initial conditions. The results are then compared to fragmentation models
in [6] and resulting from complex hydrodynamic code simulations.

A major bottleneck in determining appropriate mitigation methods for NEOs has been a lack of
experimental data on the efficacy of each approach, forcing a reliance on simulations to determine
mission effectiveness. As we move from the concept stage into true mission planning for effective
NEO threat mitigation, we must depart from simulation of a few sample cases and instead use actual
mission parameters to integrate modeling and simulation into the mission design cycle. This paper
presents the development of simulation tools designed to be implemented as part of the mission
design procedure for nuclear fragmentation and dispersion of an NEO. A brief history of general
purpose GPU computing will be given, followed by the particulars of high-level language access
to the GPU for this simulation. Motivation for the parallelization of the presented model lies in
the decoupled nature of each hydrodynamic particle, relying only on information for its immediate
neighbors. Improvements of the fragmentation model are shown to result in 60% cost savings for
the simulation and a speedup of over 300x compared to serial CPU implementation. The adaptation
of previously presented models to the memory and compute capability of the GPU architecture will
be described, as well as steps taken to optimize performance in the presence of GPU limitations.

Past work [5,7] showed that a large amount of data can be processed using GPU simulation.
Initial work was focused mostly on prediction of relative impacting mass. Disruption at different
times along a given orbit can have a large effect on the resulting shape of the debris cloud. This
paper looks at the fragmentation model to better address how uncertainty in the NEO breakup affects
orbital prediction, using the model developed in [4]. This has allowed for a revolution in computing
on a budget, allowing hundreds of complex simulations to be tested. While new high-performance
computing (HPC) technology is shown to solve old problems faster, this paper also addresses the
identification of new problems that were previously intractable without the use of a supercomputer
or dedicated cluster.

SIMULATION MODEL

This section presents the equations of motion and target model used in the fragmentation and
dispersion simulations. Two primary reference targets are used, to emphasize the differences be-
tween material composition. Both are 100 meters in diameter, but have different bulk densities and
material strength properties. The first target is a rubble-pile asteroid, with a bulk density of 1.91
g/cm3. This is a likely target for demonstrating the behavior of more porous material. The second
target is a single granite boulder with a bulk density of 2.63 g/cm3. A linear model for material
strength is used in this target with a yield strength of 14.6 MPa and a shear modulus of 35 MPa,
resulting in a more granulated fragmentation and slower dispersion velocities. Real asteroid targets
are expected to fall within these two extremes, with variances for composition, distribution of mass,
and orientation. A Smoothed Particle Hydrodynamics (SPH) model [4] is used for the asteroid frag-
mentation simulation under 3 initial conditions: a subsurface explosion of 100 kt buried at a 5 m
depth, a surface blast of 100 kt surrounded by a 1 m thick aluminum impactor, and a standoff blast
at 10 m above the surface. We assume an isotropic Weibull distribution of implicit flaws in the NEO
material and conduct Monte Carlo simulation to establish a mean response of the target NEO to the
fragmentation process. Resulting coherent masses are propagated through a model of solar system
dynamics until the predetermined date of impact. Masses remaining on impact trajectories undergo
a simulation of reentry into Earth’s atmosphere, resulting in final tallies of mass missing the Earth,
fragments on capture trajectories, airburst events, and impacts of reduced-mass fragments.
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Hydrodynamic Equations

For the purposes of the present simulation study, a meshless hydrodynamics model was desired.
This approach would eliminate the need for storing and updating a grid, simplify calculations for
large deformations, and allow for contiguous memory access to local field properties. The SPH
formulation [8,9] was chosen to satisfy the first two goals, while the latter will be discussed with
regards to the GPU implementation. The core idea of SPH is to approximate a field property f(x)
by using a mollifier W (also known as an approximate identity) with compact support:

〈f(x)〉 =

∫
Ω
f(s)W (x− s)ds, W ∈ C1

0 (Rn), Ω = supp(W ) (1)

where the brackets indicate the SPH approximation [9], allowing the field variables to be computed
as a sum over the nearest neighbor particles representing the flow. In the present formulation, W
is taken as the cubic spline kernel [8,9], with a variable isotropic domain of support with radius h.
Changing h in space and time allows for the simulation to respond to changes in flow conditions
with a change in local resolution [8,9]. A mass m is assigned to each particle representative in
the model, as well as initial position and velocity components (xβ and vβ) in each β direction.
Material properties such as density, ρ, and specific energy, e, complete the state description. Similar
to the above integral relationship, derivatives and integrals of field functions can be approximated,
resulting in the following set of equations [8-10] involving the kernel derivative (a scalar valued
function of vector position x):
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where repeated indices in a product indicate implied summation over all possible values, σαβ is
the stress tensor, P is the pressure, Sαβ is the deviatoric (traceless) stress tensor, εαβ is the local
strain rate tensor, F represents external forces, and H represents energy sources. Πij represents
the Monaghan numerical viscosity [9,11] used to resolve shocks, accommodate heating along the
shock, and resist unphysical material penetration. The material strength model for the solid target
uses an elastic-perfectly plastic description of strength [8-10], where the hydrodynamic stress is
determined as

σαβi = −Piδαβ + (1− η)Sαβi , η ∈ [0, 1] (6)

where η is a material damage indicator, to be discussed later. It should be noted that fully damaged
material (η = 1) is relieved of all stress due to deformation and behaves as a cohesionless fluid
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[10,12]. The rubble-pile target is treated in this manner by default. In this elastic-plastic model,
the components of the deviatoric stress tensor Sαβ evolve using the following equation based on
Hooke’s law [8,13]:

DSαβi
Dt

= 2Gs

(
εαβi − 3δαβi εγγi

)
+ Sαγi Rβγi +Rαγi Sγβi (7)

where Rαβ is the local rotation rate tensor, Gs is the shear modulus, and the SPH approximation for
these terms is given by
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To complete this system, we use the following equations governing the change of support radius
h [8,9], and the fracture damage ratio η [10]. The latter is limited in accordance with the number of
material flaws activated in the structure.

Dhi
Dt

= − 1

n

hi
ρi

Dρi
Dt

,
D

Dt
η1/3 =

cg
rs

(10)

where cg is the crack growth rate, here assumed to be 0.4 times the local sound speed [10], and
rs is the radius of the subvolume subject to tensile strain. In the present model, the latter term is
estimated by interpolation based on the strain rate tensor of neighbor particles. An equation of state
remains to complete the mechanical system. We use the Tillotson equation of state [14] in the solid
asteroid and in the aluminum penetrator used to deliver the surface explosive. This is modified to
include porosity, and an irreversible crush strength, for the “rubble pile” target [12,15]. We assume
a power law distribution for number of implicit flaws in a volume of material with respect to local
tensile strain (a Weibull distribution), and assign flaws with specific activation thresholds to each
SPH particle [10]. The maximum damage allowed to accumulate in a volume is described by

ηmax
i =

(
ni
ntot
i

)1/3

, εi =
σti

(1− ηi)E
(11)

where ni is the number of active flaws (ε > εact) and ntot is the total number of flaws assigned to a
particle, which can vary widely, but is always at least one. Equation (11) also gives the relationship
for the local scalar strain, as a function of the maximum tensile stress σt, the local damage, and the
Youngs modulus E.

Orbit Propagation

Statistics representing the fragmented system are collected and stored as cumulative density func-
tions for the needed variables, similar to those shown in Fig. 1. A representative fragment system
of 10,000 to 100,000 fragments is created from these statistics using inverse transform sampling.
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Figure 1. Cumulative Density Functions for Disrupted Asteroid.
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Figure 2. Rotating Local-Vertical-Local-Horizontal (LVLH) Frame.

The debris cloud is given global coordinates in a Local-Vertical-Local-Horizontal (LVLH) reference
frame about the center of mass, as shown in Fig. 2. Since the hydrodynamic model is axisymmet-
ric, and has a definite direction of maximum momentum along the axis of symmetry, a desired
deflection direction must be chosen. In the present paper, deflections along the 3 LVLH axes are
considered: radial (±x), transverse (±y), and normal (±z) axes. These are then integrated to predict
an ephemeris for a 48 hour period surrounding the nominal time of impact. Since the LVLH refer-
ence frame is computationally beneficial for self-gravity and collision modelling among fragments
[5], we use the nonlinear relative equations of motion for this frame to govern fragment trajectories
[5,7]:
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ÿi = −2θ̇

(
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ṙc
rc
xi

)
+ θ̇2yi −

µ

r3
d

+
µE
r3
Ei

(yE − yi) + F yi (13)

z̈i = − µ
r3
d

zi +
µE
r3
Ei

(zE − zi) + F zi (14)

where x, y, z, rc, and θ are defined as shown in Fig. 2, rd is the length of the relative coordinate
vector, µ and µE are gravitational parameters for the sun and the Earth, rEi is the distance from
each fragment to Earth, and (F x, F y, F z) are the combined acceleration components due to 3rd
body gravitational terms (solar system major body model [7]), self gravity, and collision correc-
tions. The threading structure for computing the values for self gravity terms is described in [5],
while collisions are predicted using a Sort-and-Search algorithm [16], resulting in post-collision
changes to position and velocity of fragments. An elastic spherical collision model is assumed for
the fragments, with a coefficient of restitution of 0.5.

Uncertainty Analysis

In order to test the response of orbital dispersion with respect to uncertain initial fragment posi-
tions and velocities, a Gaussian noise is added to the mapping around the nominal center of mass. A
standard deviation of 10% is assumed, resulting in deviations from the hydrodynamic simulations
up to ± 30%. For a given orbit, 1000 random perturbations are integrated to impact, resulting in an
average system behavior and a standard deviation representative of the uncertainty due to the initial
conditions.

This procedure is completed for a database of 906 orbits chosen to impact at a fixed date. The
orbital parameters for the nominal trajectory are sampled from a (a, e, i) space that represents the
distribution of known NEOs, as shown in Fig. 3. For each of 6 deflection directions, the Monte
Carlo procedure described above results in a characteristic behavior of a disrupted NEO on the
range of orbits tested.

DISRUPTION MISSION PROFILES

This section outlines the initial conditions for three method of NEO deflection using nuclear
explosive devices. In all cases, a 100 m diameter target asteroid is modeled with an energy source
of 100 kt. Thermal emission is omitted from the subsurface and surface explosions due to absorbtion
by surrounding material in the time scale of interest.

Subsurface Explosion Setup

For this simulation, the explosive is modeled as a cylindrical energy source buried at a depth of
5 meters. As shown for the solid target in Fig. 4, The blast wave compresses the NEO, reducing
it to fragments, and disperses it primarily along the axis of the explosion. The resulting fragment
distribution for a case like this has a peak between 20-70 m/s, with a tail of high-speed ejecta like
that shown in Fig. 4.
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Figure 3. Histograms of Known NEO Population.

Surface Penetrator Model

Two main models for an explosion at the surface are used. One is a static explosion, which results
in vastly different systems depending on the composition of the body. For a solid target, cratering
and pitting is expected rather than disruption. Even dispersed rubble-pile asteroids have a far lower
mean fragment velocity than a similar subsurface system. The second model, shown here, includes
an aluminum penetrator impacting the surface at 6.1 km/s. The explosion thermal energy turns the
high-mass impactor into a plasma, which burrows into the surface as it releases its energy. Slower
dispersion velocity is observed than the subsurface case, but this approach is extremely beneficial
from an engineering standpoint, as there is strong coupling between time-to-impact and a reduction
in mission fuel cost [17]. The benefit to this method relative to a subsurface explosion is that it does
not require a rendezvous, and therefore there are available launch windows for this type of mission
right up until immediately before the impact date.
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Figure 4. Subsurface Explosion and Resulting Fragment Velocities.

Figure 5. Radial Energy Deposition and Total Deposition Region.

Standoff Energy Deposition

For a standoff blast, additional physics must be considered. An energy deposition strategy is
required that does not directly compute X-ray and neutron scattering in the target. For this, a ray-
tracing algorithm is used with radial energy deposition at the surface as shown in Fig. 5 for neutrons.
This is derived from a Monte Carlo scattering result from TART, a DOE neutron deposition code, in
NEO analog materials [18]. A 10% neutron yield is assumed for these simulations, and a maximum
deposition depth of 1.5 m to compare to deposition predicted for chondritic materials [19]. The
overall deposition region (shown as the logarithm of deposited energy) is also shown in Fig. 5.
A modified SPH node representation is created that resembles an ablative modeling grid used in
high-energy deposition physics. This distribution is shown in Fig. 6, and has a minimum smoothing
scale of 0.1 cm with a maximum local change rate of 10% up to 0.2 m resolution. Also in Fig. 6,
the resulting ablation provides an effect similar to that of a rocket, but also disrupts the rubble-pile
target completely.
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Figure 6. SPH Nodes and Resulting Ablation for Standoff Model.

COMPUTATIONAL APPROACH

This section address the computational approach used to solve the disruption problem. Each state
variable update for a fragment is conducted in parallel at each time step. A variety of hardware
was available for this project, with a substantial difference in performance. This allowed us to
get reasonable estimates on the computational cost of this simulation, in comparison to LINPACK
performance numbers. Performance can vary based on the type of arrays used, and the number of
threads dedicated to each GPU calculation. These factors are determined by the CUDA Compute
Capability (CUDA CC), which is a property of the GPU [20]. These cost estimates are used to
determine hardware performance on the various systems. A summary of the hardware used is shown
in Table 1 (Note: all CPUs are Intel brand, and all GPUs are NVIDIA brand).

Table 1. Hardware for Benchmark Systems

System Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

CPU 1x Core2 Q6600 1x Core2 Q6600 1x Xeon X5550 2x Xeon E5520 2x Xeon X5650
CPU Cores 4 4 4 8 12

CPU TPEAK 9.6 GFLOPs 9.6 GFLOPs 12.8 GFLOPs 21.36 GFLOPs 32.04 GFLOPs
GPU 1x 8800GTS 1x GTX470 1x GTX480 4x Tesla c1060 4x Tesla c2050

GPU Cores 112 448 480 960 1792
GPU TPEAK 84 GFLOPs 324 GFLOPs 385 GFLOPs 336 GFLOPs 2060 GFLOPs

CUDA CC CC 1.0 CC 2.0 CC 2.0 CC 1.3 CC 2.0

Each thread on the GPU calculates the state variable change for one fragment, with the GPU
kernel limited to one time step. This is necessary because the positions of the planets and other
gravitating bodies must be calculated and transferred to the GPU at each time step. Additionally,
the positions of fragments at each integration substep are shared among multiple GPUs and CPU
threads. For this reason, the present hydrodynamics model is predominantly bandwidth-limited
for small data sets. While grid information is not retained, one of the disadvantages of the SPH
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hydrocode is that neighboring particles must be calculated at each time step. Our approach in
this model is to create a bounding volume for each SPH particle and perform the same Sort and
Sweep in parallel as used to detect collisions in the orbital model [16]. We retain the information
for neighbors connected by material strength, as well as carrying neighbor information through the
correction step of the integrator. This results in a 28% performance improvement over recalculating
neighbors at both the prediction and correction steps, while allowing for a variable time step based
on the Courant condition [8,9]:

δt = min
i

hi
ci

(15)

where c is the local sound speed. While the reduction operation to determine the new time step can
be done in parallel, all GPU threads must have position information for all particles to determine
neighbors. This requirement could be eliminated through clever domain decomposition, but there
is a tradeoff between associating a mesh to the model and taking advantage of contiguous mem-
ory sections of particles. Load balancing would also require additional communication between
GPUs, which has an impact on performance, as PCI-E bandwidth is one of the limiting factors in
GPU acceleration [20]. Our memory model for this simulation includes a shared host memory, dis-
tributed device memory for each GPU, and data transfers between them handled through explicit
array transfer. Each block of compute threads on the GPU takes the data it needs from the global
device memory when the kernel reaches its block. This is an important factor, because the vary-
ing compute capabilities have different limitations on this block memory, changing the number of
threads that may be used in the calculation. Constants are transferred to all GPU memories implic-
itly using a pointer to the host constant value. While modern dedicated compute GPUs have a high
amount of onboard memory, it usually is far less than system memory. Though it may seem ad-
vantageous to calculate parameters for every time step before the start of the simulation, the arrays
resulting from this approach are quite large. Each model of GPU has a limited number of memory
registers available to each computing block of threads [20]. Therefore, the use of several large ar-
rays can actually slow down the simulation in some cases, by lowering the number of threads below
the maximum allowed by the architecture. This is addressed in the present code by utilizing asyn-
chronous data transfers and kernel launches to split the work into streams. This allows the CPU to
calculate new parameters needed for the next time step while the GPU is updating the current step.

RESULTS

In order to address the effectiveness of different fragmentation methods, we compare the mass re-
maining on impacting trajectories (including the uncertainty from the Monte Carlo process) against
other methods for each orbit. For example, Fig. 7 shows the relative impacting mass for the sur-
face penetrator in both the solid and the rubble-pile targets. On average across the orbits tested, the
impacting mass was 10% higher for the solid target compared to the rubble target for deflections
in the radial direction. Estimates like this will eventually allow for tabular look-up of performance
for various methods without direct computation. It was also found that impacting mass for the solid
target was 20% higher than the rubble target in the transverse direction.

No strong correlation was found for the semimajor axis or eccentricity of the NEO orbit with
only 15 days of lead time, however, deflections on orbits with high inclination were more effective,
as shown in Fig. 8. for the subsurface case. Ejecta velocities for the dynamic surface burst (at 6.1
km/s) were within the 10% assumed noise range compared to a static buried explosive, as shown
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Figure 7. Relative Performance for Surface Impactor.

in Fig. 9. Thus, an emphasis might be placed on hypervelocity intercept and guidance technology
rather than a rendezvous mission. One possible interceptor design includes an aluminum impactor
followed by an explosive. With both interceptors impacting at 6.1 km/s, the resulting ejecta speed
is on average 25% higher than the single surface blast, with a standard deviation of 5.3%. Figure
10 shows the relative velocities for these cases, which results in 20% lower impacting mass on most
orbits tested.

Computational Optimization

A single computational node was used to determine optimal distribution of MPI and OpenMP
processes across the current worker topology being considered. This system has 2 sockets populated
with Intel Xeon X5650 six-core CPUs at 2.66 Ghz. Intel HyperThreading technology is enabled,
resulting in 24 logical processors visible to the operating system. Additionally, the default level
of OpenMP threading is 24. There are 4 NVIDIA Tesla C2050 GPU cards, each connected on a
dedicated PCI-E x16 bus. System RAM is 32 GB, while each GPU has 3 GB GDDR5 for a total
GPU work unit of 12 GB (11.2 GB with ECC enabled). Fourteen multiprocessors on each card
result in 448 shader cores each, limited to a maximum kernel launch of 1024 threads per thread
block. This new “Fermi” GPU architecture has a theoretical peak performance of 515 Mflops in
double precision, representing a game-changing leap forward in GPU double precision computing,
as shown by real-world results [5].

While grid information does not need to be stored for this model, the drawback is that neighbor-
ing particles need to be determined at each time step. Since the integration scheme is a second order
predictor-corrector scheme, particle information is needed at both steps. The first change made to
the standard scheme was to retain the neighbor ID information for the corrector step. Only the ker-
nel and kernel derivative values at the new neighbor predicted position need to be computed. This
reduced time-to-solution by 30.2% compared to a two-stage neighbor finding algorithm. Results for
both cases were compared, and while ending state values could be slightly different the distribution
remained the same, and the method conserved energy slightly better through the end of the simula-
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Figure 8. Impacting Mass for Subsurface Explosion on Orbits with Varying Inclination.

tion. A possible beneficial side effect of this approach is the reduction of importance of neighbor
changes in a prediction step, which might help damp out numerical instabilities and allow for larger
time step changes. This is something to be tested in the future. Also, while brute force computation
of neighbor particles was the original approach, a Sort-and-Sweep method reduced this time by 36%
for the present target model. This method scales as N logN rather than N2 [16].

Neighbor information arrays were stored in a column-major format by particle, allowing stride 1
access to the ID number, kernel value, and kernel derivative values for each neighbor of a particle.
Additionally, loop unrolling and inlining for simple functions were implemented, and optimization
flags were passed in the build step. For the GPU model, utilizing asynchronous kernel launches
to continue computation without synchronization resulted in an 8% performance increase. The
theoretical load on each process should be equal, since each has the same number of particles
for which a state update needs to be computed. However, in areas of quickly changing density
(for example the expanding shock wave), the number of average neighbors for a particle goes up
dramatically. This is controlled in 2 ways to aid load balancing. First, the ID assignment scheme
works outward in a radial manner, while making sure that mirroring particles on opposite sides of
the primary axis are adjacent in memory. Second, the evolution of h strives to keep the number of
neighboring particles near the starting value, resulting in an equal computational burden. For the
GPU model, a load factor was developed, dividing the minimum time to complete a section between
synchronizations by the maximum time. Sampling this load factor allows one to better understand
the efficiency of the code section. At a time of 1.2 ms, an example chosen because of the high
energy of this point of the simulation, a vertical distribution of particle IDs resulted in a load factor
efficiency of around 0.68. The present method has improved this portion to a median of 0.87.

Performance

Pure MPI scalability for up to 12 processes was tested on the present hardware, resulting in near
linear scaling and a total parallel speedup of 8.9 for MPI. Including OpenMP in a Hybrid parallel
scheme, a total parallel speedup of 11.9 is achieved, showing near perfect expected scalability across
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Figure 9. Impacting Mass Comparison for Subsurface and Dynamic Surface Cases.

a single node as shown in Fig. 9. Thus, each additional planned node might add almost 12x speedup
for host computation, minus internode communication overhead. As shown in Fig. 9, when the
binding option is passed to the Hydra process manager to set 1-2 MPI processes per socket, and
an OpenMP thread level of 6 is set, the best performing speedup for the system is obtained. This
corresponds to a value of 11.2 for 12 computational threads and 11.9 for 24 computational threads.
Performance improvement using ¿ 12 threads is predominantly dependent on the HyperThreading
hardware implementation. This is shown to only have an improvement over 12 threads when the
shared thread level is 4, 6, 8, or 12. However, good performance with 12 threads among these
hybrid schemes was limited to an OpenMP level of 6 and 12. While the default OpenMP maximum
thread level for this system is 24, benefits from this technology are implementation dependent, so
the preferred setup for future system programming is 1 MPI process per socket with an OpenMP
threading level of 6 unless improvement from additional MPI processes can be demonstrated.

GPU acceleration performance for this method is a substantial improvement over a larger CPU-
only cluster. Since the threading structure of the GPU is limited to SIMD kernel launches of multiple
threads on a multiprocessor, serial performance for comparison is measured on the host CPU. Fig 9
shows then relationship between the number of GPUs used in the state update process and the paral-
lel speedup. At least 1 MPI thread is needed per GPU. In fact, using the currently supported CUDA
Fortran toolkit (version 4.0), binding between CPU thread and GPU control requires that additional
threading use a shared memory approach such as OpenMP. In a previous test, GPU speedup for this
architecture ranges from 50x to 120x for a 50 m diameter target problem. Since the GPU approach
works well for data-parallel problems, one would expect that increasing the scale of the problem
would yield better performance. In fact, using the current solid target standoff model (3.1M par-
ticles) maximum speedup on a single node is increased to 357.9x, as shown in Fig. 9. Since the
neighbor search problem is substantially increased, the parallel structure of the GPU is far preferred
to the hybrid CPU programming model.
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Figure 10. Mean Ejecta Velocity for Single and Double Impactor Cases.

Figure 11. Comparison of Single-Node Performance on CPU and GPU.

CONCLUSION

The present SPH hydrocode suggests that a dynamic model of a hypervelocity surface burst yields
results similar in spatial and temporal distribution to a static subsurface explosion. This gives addi-
tional launch windows for mission design, limits the fuel needed for a rendezvous burn, and avoids
the need to bury the explosive payload. Additionally, the dynamic model should better predict sys-
tem behavior when addressing high velocity penetrator architectures. This might give an option for
realistically determining the limits of such a system for asteroid deflection missions. NEO orbital
parameters such as semimajor axis and eccentricity were not found to be important for these time
scale, but it was found that inclination was important in determining effectiveness of any given
method.

All methods of disruption using a 100 kt nuclear energy source were quite effective for 100
m diameter targets for 15 days lead time, regardless of the orbit considered. Future work should
consider larger bodies, a range of source energies, and lead times specific to the available mission
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time for a given orbit. There was a slight advantage to the two impactor system analyzed compared
to a single surface burst, in the form of higher coupled energy and a lower impacting mass on most
orbits, including uncertainty.

New HPC technology utilizing GPU acceleration has resulted in orders of magnitude improve-
ment in computational ability. Speedup of the GPU accelerated model compared to serial execution
for the both target models has been demonstrated. While the 330,000 particles of the penetrator
target are limited mostly by communication bandwidth, the 3.1 million particles in the standoff
model are limited by computational speed and memory bandwidth for the threads on the GPU. A
substantial speedup improvement, from 53x to 358x, is observed. This shows single node compu-
tational performance on the same order as a moderate cluster. The ability to run multiple cases to
address statistical system behavior results in simulation being integrated into overall mission de-
sign. Mission effectiveness can be estimated in advance of a need for mission design, allowing new
architectures and interchangeable components for a universal deflection plan. This paper outlined
the development of software and hardware tools to aid the planning of NEO deflection mission
design, and the current project strives to identify key technologies for effective implementation.
This technology provides a useful reduction in time-to-solution comparable to 30 similar CPU-only
nodes (which would cost $4,000 each) in a $14,000 form factor, showing a 8.6x improvement in
cost-adjusted performance.
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